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It is shown that a general relativistic space-time with covariant-constant energy- 
momentum tensor is Ricci symmetric. Two particular types of such general 
relativistic space-times are considered and the nature of each is determined. 

1. I N T R O D U C T I O N  

General relativity flows from the Einstein equation which implies that 
the energy-momentum tensor is of  vanishing divergence. This requirement 
of the energy-momentum tensor is satisfied if this tensor is covariant-constant. 
It is therefore meaningful to ask whether the energy-momentum tensor of  a 
given general relativistic space-time is covariant-constant. In this paper we 
first show that a general relativistic space-time with covariant-constant 
energy-momentum tensor is Ricci symmetric, i.e., it has covariant-constant 
Ricci tensor. Next we consider a special type of  space-time which is called 
pseudo Ricci symmetric. 

A Riemannian manifold (M", g) is called pseudo Ricci symmetric if its 
Ricci tensor S o f  type (0, 2) satisfies the condition (Chaki, 1988) 

(V~S)(Y, Z) = 2A(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(Y, X) (1.1) 

where A is a 1-form, 

g(X, P) = A(X) (1.2) 

for all vector fields X, and V denotes the operator of covaxiant differentiation 
with respect to the metric tensor g. 
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A is called the associated l-form and P is called the basic vector field 
of such a manifold, and an n-dimensional manifold of this kind is denoted 
by (PRS),. 

It is shown that if a general relativistic space-time is a semi-Riemannian 
(PRS)4 with covariant-constant energy-momentum tensor, then the space- 
time is a vacuum, i.e., devoid of matter. 

Finally, a general relativistic perfect fluid space-time with cosmological 
constant k and flow vector field U is considered in which the condition 
B(R(X, y Z)) = 0 is satisfied, where B(X) = g(X, U) for all vector fields X. 
It is shown that if in such a space-time the energy-momentum tensor is 
covariant-constant, then each of VuU and div U is zero and k satisfies the 
condition r/6 < k < r/2. In other words, the acceleration vector and the 
expansion scalar of  the fluid are zero and the cosmological constant k satisfies 
the condition r/6 < k < r/2. 

2. G E N E R A L  R E L A T I V I S T I C  S P A C E - T I M E  W I T H  
COVARIANT-CONSTANT E N E R G Y - M O M E N T U M  T E N S O R  

Let (M 4, g) be a general relativistic space-time and T denote the (0, 2) 
type of energy-momentum tensor. In this section we suppose that 

VT = 0 (2.1) 

where V has the meaning already mentioned. Denote the scalar curvature of  
(M 4, g) by r. Then Einstein's equation can be written as 

1 
S - ~ rg = kT (2.2) 

where k is the gravitational constant. Differentiating (2.2) covariantly, we get 

In virtue of (2.1) it follows from (2.3) that 

VS - (~ dr)g = O (2.4) 

Contracting (2.4), we have 

or, 

dr - 2dr = 0 

dr = 0 (2.5) 
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In virtue of (2.5), equation (2.4) takes the form 

VS = 0 (2.6) 

This shows that the space-time under consideration has covariant-constant 
Ricci tensor, i.e., the space-time is Ricci symmetric. 

Hence we can state the following result. 

Theorem 1. A general relativistic space-time with covariant-constant 
energy-momentum tensor is Ricci symmetric and is of constant scalar 
curvature. 

Note. Theorem 1 of  Garcia de Andrade (1991) follows as a particular 
case of the above theorem. 

3. P S E U D O - R I C C I - S Y M M E T R I C  G E N E R A L  R E L A T I V I S T I C  
SPACE-TIME WITH COVARIANT-CONSTANT ENERGY- 
MOMENTUM TENSOR 

In this section we consider a general relativistic space-time which is of  
(PRS)4 type with associated 1-form A and basic vector field P. We further 
suppose that VT = 0. Then from Theorem 1 we get 

VS = 0 (3.1) 

Since the space-time is of type (PRS)4, we obtain 

(VxS)(Y Z) = 2A(X)S(y Z) + A(Y)S(X, Z) + A(Z)S(Y, X) (3.2) 

In virtue of (3.1), the relation (3.2) takes the form 

2A(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(Y, X) = 0 (3.3) 

It is known (Chaki, 1988) that in a (PRS),, with basic vector field P the 
relation S(X, P) = 0 holds for all vector fields X. This result holds also 
for a semi-Riemannian (PRS),. Therefore for the space-time (PRS)4 under 
consideration we have 

S(X, P) = 0 (3.4) 

for all vector fields X. Putting Z = P in (3.3) and taking account of (3.4), 
we get 

A(P)S(Y, X) = 0 (3.5) 

From (3.5) it follows that 

S(Y, X) = 0 (3.6) 
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From (3.6) we have 

r = 0 (3.7) 

In virtue of (3.6) and (3.7) it follows from Einstein's equation (2.2) that 

T = 0 (3.8) 

This means that the space-time is devoid of matter. This leads to the follow- 
ing result. 

Theorem 2. A pseudo-Ricci-symmetric relativistic space-time with 
covariant-constant energy-momentum tensor is a vacuum. 

4. P E R F E C T  FLUID SPACE-TIME W I T H  C O S M O L O G I C A L  
CONSTANT IN W H I C H  T H E  ENERGY-MOMENTUM TENSOR 
IS COVARIANT-CONSTANT AND B(R(X, Y, Z)) = O, W H E R E  
B(X) = g(X, U) FOR A L L  V E C T O R  FIELDS X, W I T H  U 
THE F L O W  VECTOR FIELD OF T H E  FLUID 

Denote the cosmological constant by h; then Einstein's equation can be 
written as follows (Beem and Ehrlich, 1981): 

1 
S -  ~ rg + hg = kT (4.1) 

where 

T = (or + p)B ® B + pg (4.2) 

with cr and p denoting the density and pressure of the fluid, respectively, and 
B being given by 

g(X, U) = B(X) for all X (4.3) 

We can express (4.1) as follows: 

1 
S(X, Y) - ~ rg(X, Y) + hg(X, Y) 

= k[(tr + p)B(X)B(Y) + pg(X, Y)] (4.4) 

By hypothesis, 

B(R(X, E Z)) = 0 

o r  

'R(X, Y, Z, U) = 0 (4.5) 
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where 

'R(X, E Z, U) = g[R(X, E Z), U] (4.6) 

Taking a frame field and contracting (4.5), we get 

S(X, U) = 0 (4.7) 

Now, putting Y = U in (4.4), we get 

1 
S(X, U) - -~ rg(X, U) + hg(X, U) 

= k[(o- + p)B(U)B(X) + pg(X, U)] (4.8) 

In virtue o f  (4.7) and taking account  o f  the fact that B(U) = - 1 because U 
is timelike, we can write (4.8) as follows: 

l 
- - r +  h = k [ - ( c r  + p )  + p ]  = - k c r  

2 

Hence 

r -  2X 
O "  - -  - -  

2k 

Again taking a frame field and contracting (4.4), we get 

r -  2r  + 4h = k ( - ~ - p  + 4 p )  = k ( 3 p -  a) 

Hence 

r -  2h 
3kp = k c r -  r + 4h = 2 r + 4k 

From this we get 

r 6h  - r 
= 3h - - -  

2 2 

(4.9) 

6~. - r 
P = 6k (4.10) 

By hypothesis,  VT = 0. Hence from Theorem 1 it follows that r is constant. 
Therefore  from (4.9) and (4.10) we see that both cr and p are constant. 

It is known (O'Nei l l ,  1983) that the equation div T = 0 implies the 
fol lowing for a perfect fluid: 

Ucr = - (o r  + p) div U (energy equation) (4.11) 

(or + p)VuU = - g r a d p  - (Up)U (force equation) (4.12) 
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Since in this case both cr and p are constant, it follows from (4.11) and 
(4.12) that 

div U = 0 and VvU = 0 

But div U represents the expansion scalar and VuU represents the accelera- 
tion vector. 

Thus in this case both the expansion scalar and the acceleration vector 
are zero. 

Summing up, we can state the following result: 

Theorem 3. Let a perfect fluid space-time with cosmological constant 
h and flow vector field U satisfy the condition B(R(X, Y, Z)) = 0, where 
g(X, U) = B(X) for all X. If  in such a space-time the energy-momentum 
tensor is covariant-constant, then the fluid has vanishing acceleration and its 
expansion scalar is zero. Further, in this case the cosmological  constant has 
to satisfy the condition r/6 < h < r/2. 
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